Molecular Analysis of the MUT gene in Filipino Patients with Methylmalonic Acidemia

Catherine Lynn T. Silao1,2, Karen N. Hernandez3, Daffodil M. Canson3, Sylvia C. Estrada1,2, Mary Anne D. Chiong1,2, Eva Cutiongco-de la Paz1,2, Carmencita David-Padilla1,2

1Department of Pediatrics, College of Medicine and Philippine General Hospital, University of the Philippines Manila; 2Institute of Human Genetics, National Institutes of Health, University of the Philippines Manila

ABSTRACT

Introduction. Methylmalonic acidemia (MMA) is an autosomal recessive inborn error of metabolism resulting from defects in the nuclear encoded mitochondrial enzyme methylmalonyl-CoA mutase. This study characterizes for the first time the genotype of Filipino patients with MMA.

Methods. Clinical data were collected from 3 patients diagnosed with MMA at the Department of Pediatrics of the Philippine General Hospital from January 2002 to June 2008. The diagnosis was confirmed by urine organic acid analysis using gas chromatography – mass spectrometry (GC-MS). Molecular analysis of the MUT gene was subsequently performed using DNA from dried blood spots or peripheral blood of patients, PCR amplification and direct sequence analysis.

Results. The patients presented classically with progressive encephalopathy, metabolic acidosis and secondary hyperammonemia in the early neonatal period. Urine amino and organic acid screens showed increased glycine, methylmalonic acid and other secondary metabolites for methylmalonic aciduria. Mutations detected in the MUT gene analysis [c.1595G>A (p.R532H), c.2011G>A (p.V671I), c.322C>T (p.R108C), c.982C>T (p.L328F) and c.1280G>A (p.G427D)] were compound heterozygous in all patients.

Conclusion. Our results show the genetic heterogeneity in Filipino MMA patients and helped emphasize the importance of molecular diagnosis particularly in the genetic counseling of the patients and their families.

Key Words: Methylmalonic Acidemia, Metabolic Disorders, Methylmalonyl-CoA mutase, MMA, MUT

Introduction

Methylmalonic acidemia (MMA; OMIM 251000) is an autosomal recessive disorder caused by inadequate function of the methylmalonyl-CoA mutase, a mitochondrial enzyme involved in the metabolism of certain amino acids, odd chain fats and cholesterol (Figure 1). Two biochemical phenotypes have been established with mut⁰ cells having very low or non-detectable enzyme activity and mut having residual enzyme activity that is increased by addition of hydroxycobalamin during cell culture. Patients with this disorder present classically in the newborn period with non-specific findings such as recurrent vomiting, dehydration, lethargy, failure to thrive, severe metabolic acidosis, hepatomegaly, hyperammonemia, thrombocytopenia, neutropenia, neurological deficit, coma and even death.

Figure 1. Simplified pathway illustrating the metabolic blockage points of MMA. The mut⁰ form of MMA results in a complete blockage of methylmalonyl-CoA mutase producing a toxic build-up of acyl-CoA precursors and their corresponding acylcarnitines, propionyl-carnitine, and methylmalonyl-carnitine.
intractable metabolic acidosis. The only surviving patient is presently being closely followed up at the Metabolic Clinic of the Department of Pediatrics, Philippine General Hospital (PGH).

This study describes the genotype of three Filipino MMA patients drawing attention to the importance of molecular diagnosis.

Methods

Cases

Three unrelated patients of Filipino descent clinically diagnosed with MMA by the Section of Genetics, Department of Pediatrics, PGH from January 2002 to June 2008 were enrolled in this present investigation. There were no consanguineous marriages among the parents of these families. All families provided informed consent for the study.

Biochemical data clinched the diagnosis of MMA for these patients. Urine amino acid screen using High Voltage Electrophoresis profiles showed increased glycine and increased methymalonic acid on fast blue-B staining. Urine organic acid analysis further supported the diagnosis of MMA with increased levels of methylmalonic acid and other secondary metabolites such as methylcitrate.

Genomic DNA was extracted from dried blood spots or peripheral blood, in accordance with standard protocols, using the QIAamp Blood DNA Mini Kit (QIAGEN Inc., Valencia, Calif.).

The primers used to sequence the MUT gene were as described with minor modifications to the reaction conditions. This allowed the analysis of the whole coding sequence including intron-exon borders and untranslated regions. PCR products were bi-directionally sequenced using the big dyeTM terminator cycle sequencing ready reaction kit and the products were subsequently separated on an ABI PRISM 3730xl electrophoresis system (Applied Biosystems, USA).

Results and Discussion

Clinical data was available for all patients. Common clinical and biochemical features showed methylmalonic aciduria, acute episodes of severe metabolic acidosis, lethargy, poor suck/cry and activity, vomiting, encephalopathy, anemia, leukopenia and hyperammonemia. All clinical presentations appeared at 2 days of age and were initially managed as infection. Despite marked improvement with medical management, two of the patients included in this study died after 2 months to one year of age due to sepsis secondary to severe pneumonia and intractable metabolic acidosis. The only surviving patient is presently being closely followed up and given a low protein diet, carnitine supplementation, and metronidazole to reduce methylmalonic acid production from gut flora. This patient is also being given supportive management during periods of disease (Table 1). Clinical data on age at onset and diagnosis, clinical findings, management and outcome were

<table>
<thead>
<tr>
<th>Patient</th>
<th>Body Weight (kg)</th>
<th>Age of Gestation (weeks)</th>
<th>Age at onset/diagnosis</th>
<th>Clinical Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMA-1 (5mo/M)</td>
<td>2.5</td>
<td>28</td>
<td>2d / 18d</td>
<td>(+)FHx: 2 spontaneous abortions; 2nd liveborn died at 10d – irritability, vomiting, hypotonia – unknown diagnosis At birth: poor cry/activity, hypotonia, vomiting, leukopenia, thrombocytopenia, uncompensated metabolic acidosis. At 2 mos: alert, active, good tone, development at par with age. Died at 5mos: sepsis due to severe pneumonia, intractable metabolic acidosis after 48 hours.</td>
</tr>
<tr>
<td>MMA-2 (3yo/M)</td>
<td>2.59</td>
<td>38</td>
<td>2d / 11d</td>
<td>At 11d: vomiting, poor suck/cry, progressive encephalopathy, severe metabolic acidosis, hyperammonemia, ketonuria, anemia, leukopenia, hypotonia At 2 mos: infectious diarrhoea, severe metabolic acidosis At 4 mos: seizures, CT scan – corpus callosum dysgenesis, developmental delay. Died at 3 yrs: sepsis due to severe pneumonia, severe metabolic acidosis after 72 hrs</td>
</tr>
<tr>
<td>MMA-3 (4yo/F)</td>
<td>2.7</td>
<td>38</td>
<td>2d / 1mo</td>
<td>At 2d: poor suck/activity, severe metabolic acidosis At 1 mo: difficulty of breathing At 3 yrs: sepsis due to gastroenteritis, ketonuria, hyperammonemia, severe metabolic acidosis At present: development at par, carnitine, vit B12, protein restriction diet, metronidazole, regular monitoring</td>
</tr>
</tbody>
</table>
further analyzed and have been detailed elsewhere.\textsuperscript{15}

To elucidate the molecular background of MMA in the 3 unrelated patients, sequence analyses of the MUT gene was done. The identified mutations were c.1595G>A, c.2011A>G, c.322C>T, c.982C>T and c.1280G>A. All the five mutations identified were compound heterozygous in all patients (Figures 2-3). Three (c.322C>T, c.982C>T and c.1280G>A) of the five identified mutations were previously reported to be disease-causing alleles (Table 2A).\textsuperscript{8,16, 17}

Table 2A. List of pathogenic mutations identified

<table>
<thead>
<tr>
<th>Mutation</th>
<th>Consequence</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient 1</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Patient 2</td>
<td>c.322C&gt;T</td>
<td>p.R108C</td>
</tr>
<tr>
<td>Patient 3</td>
<td>c.1280G&gt;A</td>
<td>p.G427D</td>
</tr>
</tbody>
</table>

Table 2B. List of polymorphisms identified

<table>
<thead>
<tr>
<th>SNP</th>
<th>Allele(s)</th>
<th>AA Change</th>
<th>Reference(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient 1</td>
<td>c.1595G&gt;A</td>
<td>Hetero G/A (p.R532H)</td>
<td>Nonconservative</td>
</tr>
<tr>
<td>c.2011G&gt;A</td>
<td>Hetero A/G (p.V671I)</td>
<td>Conservative</td>
<td>Crane &amp; Ledley 1992\textsuperscript{16}; Worgan et al 2006\textsuperscript{17}</td>
</tr>
<tr>
<td>Patient 2</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Patient 3</td>
<td>c.1595G&gt;A</td>
<td>Hetero G/A (p.R532H)</td>
<td>Nonconservative</td>
</tr>
</tbody>
</table>

The c.322C>T nucleotide substitution was identified in patient 2, causing an arginine to cysteine change at amino acid 108 (p.R108C) in one allele of the MUT gene. This mutation has been identified in 60% of Hispanic patients which is not surprising since Philippine history tells us of 3 centuries of Spanish colonization (1521-1898) with European missionaries and immigrants steadily flowing to the colony during the Spanish conquest in the 16th century.\textsuperscript{17,18,19}

The c.982C>T change producing a leucine to phenylalanine change at amino acid 328 (p.L328F) was also found in patient 2 (Figure 3). This mutation was previously reported in Europeans and is said to alter the folding or the structural stability of the protein.\textsuperscript{8}

In 2006, Worgan et al. identified only in Asian patients, the missense mutation c.1280G>A, changing glycine to aspartic acid at amino acid 427 (p.G427D), to affect a highly conserved amino acid in the linker region that connects the substrate-binding N-terminal β/α barrel domain and the cofactor (adenosylcobalamin) binding C-terminal (α, β) domain. Patient 3 was identified to be heterozygous for this mutation (Figure 2). This finding is interesting since this suggests that Filipinos may have a similar mutation spectrum as our Asian neighbors.

The c.1595G>A transition changing the amino acid arginine to histidine at position 532 (p.R532H) of the MUT gene was found in patients 1 and 3. The p.R532H, however, is a non-conservative substitution that does not interfere with enzyme activity suggesting that it occurs in a region of the protein not intimately involved with function (Figure 2).\textsuperscript{16,20} Patient 1 also presented with a c.2011G>A change causing a valine to isoleucine change at amino acid 671 of the MUT gene (p.V671I). This mutation was found to be conservative by Crane et al in 1992. Both these mutations, c.1595G>A and c.2011G>A, have been found to be common polymorphisms identified in the coding exons of the MUT gene (Table 2B).\textsuperscript{17}

The study, therefore, was only able to identify both disease causing mutations in patient 2 and only one in patient 3. It is likely that the other mutations not identified in patients 1 and 3 are present in non-coding or regulatory regions of the MUT gene or in genes required for the provision of cofactor B12 since these areas were not analyzed.\textsuperscript{21}

**Conclusion**

The frequency of metabolic disorders in the Philippines is unknown with these diseases often presenting as a diagnostic challenge for pediatricians. Therefore, a substantial proportion of cases remain undiagnosed or...
misdiagnosed with serious consequences such as disability or death even before a diagnosis is made. Since genetic heterogeneity is high for MMA with several disease causing alleles repeatedly reported in different populations, direct DNA analysis therefore, allows directed mutational analyses for our own population.  Although there is no genotype-phenotype correlation, this study still helps show the genetic heterogeneity for our patients with MMA. The molecular findings allow proper genetic counseling for these patients and highlight the potential for early prenatal diagnosis for at risk families.

Acknowledgments

The authors gratefully acknowledge the patients with MMA and their families for their cooperation and willingness to participate. The authors thank the reviewers for their constructive and detailed comments. We also express sincere gratitude to Kahlil dela Cruz-Rama, Michelle Demata-Rana, Aster Lynn Sur, Drs. Conchita Abarquez and Karl de Dios for their technical assistance and Mead Johnson Nutritional for providing the nutritional support of our patients. This work was supported by the Institute of Human Genetics, National Institutes of Health Philippines.

References